В чем опасность предиктивной аналитики
Алгоритмы могут, например, угадать вашу сексуальную ориентацию или предсказать, беременны ли вы, собираетесь ли увольняться и рискуете ли умереть в ближайшее время. Ученые могут установить расу человека по лайкам в Facebook, а власти Китая используют технологии распознавания лиц, чтобы вычислять и отслеживать представителей уйгурского этнического меньшинства.
Знают ли алгоритмы все это на самом деле или лишь выдвигают обоснованные предположения? И если они просто делают выводы, как мог бы их делать любой человек, то что плохого в том, что они такие сообразительные? Рассмотрим несколько примеров.
Состояние здоровья
Пожалуй, самый известный случай излишней догадливости алгоритма в США – это история о том, как сеть супермаркетов Target предсказывала беременность своих покупательниц. В 2012 г. в The New York Times написали о том, как компании работают с данными. В статью вошла в том числе история о том, как отец узнал о беременности своей дочери-подростка благодаря тому, что Target присылала ей купоны на товары для младенцев, как будто предугадав события. Вполне вероятно, что эта история выдумана, и, даже если такое действительно произошло, это, судя по описанию методов Target, приведенному в той же статье, было простым совпадением, а не результатом сложной предиктивной аналитики. Но так или иначе история все равно показывает пример угрозы приватности, ведь, если маркетинговое отделение компании догадывается о беременности клиента, значит, оно без согласия пользователя выяснило значимую медицинскую информацию, с которой обычно имеют право работать только специально обученные медицинские сотрудники.